最后一题,题目如下:
“牛津大学数学教授有三位聪明的学生,他们分别是汤姆、杰瑞和托马斯。”
“某日,教授想测试一下,三位学生中到底谁最聪明。”
“教授在三位学生的额头上各贴一张纸条,纸条上写有数字。”
“汤姆、杰瑞和托马斯都能看到其他两位同学额头上的数字,唯独看不见自己额头上的数字。”
“教授说,你们每人额头纸条上的数字皆为正整数,并且某两个数字相加等于另外一个数字。那么汤姆,我问你,你额头上的数字是多少?”
“汤姆说,对不起教授,我不知道。”
“教授又问杰瑞,嘿,杰瑞,你呢,你知道自己的数字是多少吗?”
“杰瑞说,对不起教授,我不知道。”
“教授继续问托马斯,亲爱的托马斯,只剩下你了,你的答案是?”、
“托马斯说,对你不起教授,我也不知道。”
“没关系,汤姆、杰瑞、还有托马斯,咱们再来一次。教授说道。”
第二次,汤姆杰瑞依旧无法说出自己的数字。
“托马斯却给出了自己答案,教授,我的数字是144。”
“教授点点头,恭喜你托马斯,你的答案正确。”
问汤姆、杰瑞额头上的数字分别是?
在这道题面前,陈家涛有关数学的一切知识储备,像拉格朗日定理,超椭圆积分,复变函数,夹逼定理,凯莱转折矩阵.......等等公式,定理,推论全都变成无用的了。
这是一道纯粹的逻辑推理题,选自imo的一道门槛题。
所需的数学知识仅仅需要,500以内的加减乘除以及简单的一次方程解法就行,其他的就要交给脑力了。
这道题充分反应出博雅数院对特招生的水平要求,也开始与时俱进了,不仅仅需要光会模式化的解题的学生,他们更加看重学生的思维逻辑能力。
数学尤其需要思维逻辑能力,西方有一句谚语是这样说的:“逻辑是不可战胜的,因为战胜逻辑同样需要另一种逻辑。”
陈家涛的逻辑思维力刚刚进过了提升,解答这道题当然不在话下,首先可以从题目中得到几个线索:
三个人只能看到其他两人的数字;第一轮三个人都无法给出答案;第二轮最后一个做答的托马斯给出了正确答案。
之后根据得到的线索可以推导出的三个条件是:
1.汤姆、杰瑞和托马斯的数皆大于0.
2.这三个数两两不相等。
3.任意一个数不是其他数的两倍。
陈家涛假设自己是托马斯,那么他在第二轮的问答中就得出144的答案,那么必然要排除上述三个条件中的一个。
如果144是汤姆设为x和杰瑞设为y的数字之差,则x-y=144。
这时x、y皆不为0,并且x不等于y,满足条件1,2。
那么要否定第3个条件,就需再列一个方程,即x+y,。这个条件是不成立的,否则第一轮就可以得到正确答案,所以托马斯的144不是两数之差,而是两数之和。
即x+44。
同理,这时设条件1、2皆成立,要使条件3不成立,则x-y。
联立两个一次方程得一个方程组:
x+44
x-y
陈家涛心算就能算出结果,108,36。
逆推回去,陈家涛在脑海中反演一遍故事场景:
汤姆头上贴的是108,杰瑞头上贴的是36,托马斯头上贴的是144。第一轮问答中,三人均无法猜出自己的数字。第二轮问答中,最后一个作答的托马斯给出了144的答案……
“没错,就是这个逻辑。”陈家涛提笔在考卷上写下全过程。
此时离考试结束还有二十分钟,周主任和苏院长一同进了办公室。
陈家涛正好在对严办事员说:“老师,我写完了,可以交卷了。”
苏院长还没等陈家涛说完,一把从他手上把试卷拿了过来,一道题一道题的检查。
“对了。”
“又对了。”
“居然全对。”
苏院长心里想着,真的是遇到天才了,于是立马抬起头盯着陈家涛,目光好似带着高温,要
阅读模式无法加载下一章,请退出